This project has received funding from the European Union's Horizon 2020 research and innovation framework programme under grant agreement No 815122

WP7 Certification Driven Stream

T7.1 - AC 3 Systems Electrification Results collection

MARCO FIORITI / T7.1 partners

Towards cyber-physical collaborative aircraft development

AC3 introduction and main objectives

WP7 Certification Driven Stream - OBJECTIVES

Perform trade-off between design and certification objectives

In the AC3&4 the following trade-off are addressed: Systems Electrification and System Safety/Minimum Performance - Aircraft Maintainability and Aircraft performance

Reduction of development time/cost due to the virtual integration of design and certification aspects

The integration of **Safety/Minimum Performance** analyses and aircraft **Maintainability** on the MDO workflow will **reduce the need of modifications** during the certification phase reducing the aircraft development time and cost

 Integration of certification constraints for aircraft performance and safety for aircraft with conventional and innovative (different level of electrification) systems in the MDO process

AGILE4.0

Increase competitiveness of aeronautical products

The AC3&4 are defining the optimal level of systems electrification and aircraft maintainability considering the **impact on aircraft LCC** (with special focus on certification and maintenance cost)

AC3 partners involved

AC3 trade-off

- Identify the best suitable systems electrification level vs certification margins and cost
- 4 different levels of systems electrification
- Certification → External noise, minimum performances, systems safety
- Detailed life cycle cost estimation

AGILE^{4.0}

AC3 Baseline definition

- Specific aircraft baseline definition for certification study
 - Definition of specific aircraft baseline with a MTOM closes to Part 23 upper limit
 - Compatible with Part 23 and Part 25 regulations giving the opportunity of comparison studies
 - Baseline defined to be compatible with:
 - Systems electrification (new ECS and actuation system)
 - Different regulations

ID	Requirement statement	Туре	Parent/Source	Stakeholders
	The standard mission shall be performed in 60			
MR1	minutes	Performance	1.1, 2.2, 4.4, 5.1	ARL, OEM, SCT, PAX
	The standard mission shall provide for the			
	transport of 19 passengers at a distance of			
MR2	370 km	Performance	1.1, 2.2, 4.4, 5.1	ARL, OEM, SCT, PAX
	The standard mission shall be performed from			
	airports with a minimum runway length of			
MR3	800m	Performance	1.2, 4.4, 5.1	ARL, SCT, PAX
			1.3, 1.11, 1.12, 1.13, 1.14, 2.10,	
	The standard mission shall be repeated after		3.1, 3.2, 3.4, 3.5, 3.9, 3.10, 5.6,	ARL,OEM, MNT, PA
MR4	20 minutes	Suitability	5.7, 6.3, 6.5, 8.1, 8.2, 8.3, 8.4	ARP, PLI
			1.3, 1.11, 1.12, 1.13, 1.15, 2.10,	
	The standard mission shall take place after a		3.1, 3.2, 3.4, 3.5, 3.9, 3.10, 5.7,	ARL, OEM, MNT, PA
MR5	maximum delay of 60 minutes	Suitability	6.3, 6.5, 8.1, 8.2, 8.3, 8.4	ARP, PLI
	The standard mission shall be performed from	Design		
MR6	year 2035 (Initial guess)	constraint	1.4, 2.7, 2.9, 7.1, 7.2, 7.3, 7.4	ARL, OEM, CRI
			1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 2.1,	
	The standard mission shall be performed at a		2.3, 2.4, 2.8, 2.10, 3.1, 3.2, 3.3,	
	maximum total operating cost between 1781	Devfermente	3.4, 3.6, 3.7, 3.9, 4.1, 4.2, 5.2,	ARL, UEM, MNT, SC
MR7	and 4000 €	Performance	6.1, 6.2, 6.3, 6.4, 6.5, 8.5, 8.6	PAX, ARP, PLI
	The standard mission cruise phase shall be			
MDQ	motors	Porformanco	15 5 2	
WIND	The standard mission shall be performed with	renormance	1.3, 3.2	Ant, FAA
	a probability of catastrophic event not greater		25 26 53 73 74 81 82	
MRG	than 1/10/9 flight hours	Suitability	83 84 85 86	OFM PAY ORT PLT
	The standard mission shall be performed from	Surcionity	0.5, 0.4, 0.5, 0.0	OLINI, I AA, CIAT, FET
	airports provided with the reference bangar			
MR10	dimensions	Performance	1.2	ARL, SCT, PAX
	The standard mission for electric variant of			,,
	the aircraft shall provide for the transport of			
MR11	9 passengers at a distance of 555 km	Performance	1 11 2 2 4 4 5 1	ARL OFM SCT PAY

TLARc	Metric	Imperial	Rationale	
MTOW	≤ 8600 KG	≤ 19000 LB	Per FAR 23	
PAX	19	19		
Range	≤1500 KM	≤800 NM	Bombardier Requirement	
Speed	0.45 M	0.45 M	Bombardier Requirement	
Ceiling	7600 m	25000 FT	Benchmark	
TOFL	<800 m	< 2600 FT	Embraer/Airport Data	

More than 300 stated requirements

All requirements are connected together with the stakeholders' needs

AGILE^{4.0}

WP7 Certification Driven Stream | Marco Fioriti/WP7 partners | February 2023

AC3 Baseline definition

Systems architectures definition

- Definition of 4 OBS architectures with different electrification level
- The different architectures have been inspired by real industry trends •

Conventional (hydraulic actuators, pneumatic IPS and ECS, low voltage)

MEA1 (electric actuators, pneumatic IPS and ECS, high voltage)

MEA2 (hydraulic actuators, electro-pneumatic IPS and ECS, high voltage)

HYDRAULIC

USERS

Landing Gea

FCS

More Electric Aircraft 2

ENGINE

ELECTRIC

SYSTEM

Avionics Fuel

Lights, IFE,

Galley, Toilets

IPS

ELECTRIC USERS

EXTERNAL

PNEUMATIC

USERS

ECS

AEA (electric actuators, electro-pneumatic IPS and ECS, high voltage)

AC3 workflow development

AC3 Achievements

Systems electrification assessment (1 of 3)

- The different architectures have been designed and integrated with the aircraft and propulsion system
- Electric actuation, bleedless, high voltage, electric ECS and IPS technologies are

Practically **constant**. Only flap surfaces deflected with actuators

Notable **mass saving** when removing Hydraulic and Pneumatic systems (electric actuation and/or bleedless architecture)

The increase of

electric system

mass is little for

architectures due

to the use of **high**

voltage (270 VDC

instead of 28 VDC)

electrified

AGILE^{4.0}

WP7 Certification Driven Stream | Marco Fioriti/WP7 partners | February 2023

AC3 Results

Systems electrification assessment

- The effect on aircraft mass and engine efficiency are both considered
- For each OBS architecture, a new aircraft is designed

Masses: Δ [%] ref. conventional

MEA 1 MEA 2 AEA

AC3 Results

- CPACS file
- <u>Take-off trajectory computed (Fly-Over</u> <u>and Later noise analysis)</u>
- <u>Approach trajectory computed</u> (Approach noise analysis)
- Airframe NOISE computed
- Engine noise assumed

Option No. of generated architectures No. of feasible No. of unfeasible architectures architectures **Conventional** 2 (Hydraulic Landing Gear Braking System) Typical Examples Typical Example Typical Example covertice at SysArch_1 1 SysArch_4 📕 SysArch 1 D SysArch_3 D RAND BAL S1 S2 S1 S2 S1 S2 (S2) 62 More Electric 1 5 4 1 (Fully Electric Landing Gear Braking System) Typical Examples Typical Example Typical Example SysArch_e1 SysArch_e3 📓 SysArch_e1 SysArch_e2 (S3)(S1)(S2)(S3) S1 S2 S3 S1 (S2 (S3) S1 S2 D1 (D2 ELECTRIC SINERS Electric Landing Gear Braking

Safety Assessment

- Systems architecture (braking system)
- Main requirement: at least 2 independent power lines
- Different electrification levels → different architectures

Minimum Performance CS23 / CS25

Politecnico di Torino

- Min. climb gradient
- Performance simulation
- Different aircraft configurations (clean, TO, LND condition)
- Different mission phases (TO, climb, Landing)

AC3 MDO results

- Systems electrification assessment with certification constraints
 - Variables: systems electrification level, wing surface
 - **Objectives:** minimum LCC and maximum Certification Margins

Results

• All electric (AEA) and More electric 1 (MEA1) are the best electrification level

MEA1

AEA

- AEA achieved minimum LCC, MEA1 achieved maximum Certification margins
- Aircraft with small wing surface perform better

Towards cyber-physical collaborative aircraft development

Thank You !

HORIZON 2020

This project has received funding from the European Union's Horizon 2020 research and innovation framework programme under grant agreement No 815122