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AC3 introduction and main objectives N

#@WP7 Certification Driven Stream - OBJECTIVES

9"
;f Mé@&/ @ Perform trade-off between design and certification objectives

“ 5W I In the AC3&4 the following trade-off are addressed: Systems Electrification and System
Safety/Minimum Performance - Aircraft Maintainability and Aircraft performance

App. Case 3

BOMBARD'ER Reduction of development time/cost due to the virtual integration of
IR design and certification aspects

Vo O Y o

¢ a2y Politecnico The integration of Safety/Minimum Performance analyses and aircraft Maintainability

I;“”m‘ll:ﬁu: d-T . . gme . . . .
e O orne on the MDO workflow will reduce the need of modifications during the certification

phase reducing the aircraft development time and cost

" |ntegration of certification
constraints for aircraft performance @ Increase competitiveness of aeronautical products

and safety for aircraft with o , L .
conventional and innovative The AC3&4 are defining the optimal level of systems electrification and aircraft

diff £l L of electrificati maintainability considering the impact on aircraft LCC (with special focus on certification
(different level of electrification) and maintenance cost)

systems in the MDO process
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AC3 partners involved

BOMBARDIER

Application case owners
- TLARs
- Support and feedback on results
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AC3 Integrator and disciplinary
expert

- MDAO framework

- Subsystems design

- Engine design

# Deutsches Zentrum
DLR fiir Luft- und Raumfahrt

Aircraft design

Institute of
Aerospace
Systems

Cost estimation
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CFS Englneermg

Fluids & Struct ..

Aerodynamlcs

MDO
expert

Performance |
Engine design’

€Concordia

ONERA

THE FRENCH AEROSPACE LAB

% UNiversiTAoecu STupi o Narou
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Certification
related
disciplines

Safety assessment

Minimum
performance

External noise
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AC3 trade-off [ diTorino

= |dentify the best suitable systems electrification level vs certification
margins and cost

= 4 different levels of systems electrification

= Certification - External noise, minimum performances, systems safety

Detailed life cycle cost estimation

= 4 different architectures with increasing More Flectr Alcrat 2 A Electc Avcrat
level of electrification

Conventional More Electric Arcraft 1
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Galley, Toilsls Lights, IF
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AC3 Baseline definition Mt

= Specific aircraft baseline definition for certification etric | _Imperial _ Al

MTOW < 8600 KG < 19000 LB
study

» Definition of specific aircraft baseline with a MTOM closes PAX 19 19

to Part 23 upper limit Range <1500 KM <800 NM Bombardier Requirement

« Compatible with Part 23 and Part 25 regulations giving the Speed 0.45 M 0.45 M Bombardier Requirement
opportunity of comparison studies

Per FAR 23

Ceiling 7600 m 25000 FT Benchmark
* Baseline defined to be compatible with: TOFL <800 m <2600 FT Embraer/Airport Data
+ Systems electrification (new ECS and actuation system)

. . 0| Reguirementstatement ] Type | Parent/Source | __Stakeholders |
° D]fferent regUlat]onS The standard mission shall be performed in 60
MR1 minutes Performance = 1.1,2.2,4.4,5.1 ARL, OEM, SCT, PAX

The standard mission shall provide for the
transport of 19 passengers at a distance of

MR2 370 km Performance = 1.1,2.2,4.4,5.1 ARL, OEM, SCT, PAX
The standard mission shall be performed from MO re t a n Sta te

airports with a minimum runway length of
MR3 800m Performance = 1.2,4.4,5.1 ARL, SCT, PAX

o
13,1.11,1.12, 1.13, 1.14,2.10, re u‘l rements
The standard mission shall be repeated after 3.1,3.2,34,35,3.9,3.10,5.6,

ARL,0EM, MNT, PAX,

MR4 20 minutes Suitability 5.7,6.3,65,8.1,8.2,83,84 ARP, PLT
13,1.11,1.12,1.13,1.15, 2.10,
The standard mission shall take place after a 3.1,3.2,34,35,39,3.10,5.7, ARL, OEM, MNT, PAX,
MRS maximum delay of 60 minutes Suitability 6.3,6.5,8.1,8.2,83,8.4 ARP, PLT

.
The standard mission shall be performed from = Design A
MR6 year 2035 (Initial guess) constraint 14,2.7,29,7.1,7.2,73,7.4 ARL, OEM, CRT req u] rel I I e n S a re

1.5,16,1.7,1.8,1.9,1.10,2.1,

The standard mission shall be performed ata 2.3,2.4,2.38,2.10,3.1,3.2,3.3,
maximum total operating cost between 1781 3.4,36,3.7,39,4.1,42,5.2, ARL, OEM, MNT, SCT, CO n n ec ted toget h e r
MR7 and 4000 € Performance = 6.1,6.2,6.3,6.4,6.5,8.5, 8.6 PAX, ARP, PLT
The standard mission cruise phase shall be . )
performed at altitude greater than 7500 W] t h t h e Sta ke h o ld e rS
MR8 meters Performance = 1.5,5.2 ARL, PAX
The standard mission shall be performed with
a probability of catastrophic event not greater 2.5,2.6,5.3,7.3,7.4,8.1,82, n eed S
MR9 than 1/1079 flight hours Suitability 8.3,84,85,8.6 OEM, PAX, CRT, PLT

The standard mission shall be performed from
airports provided with the reference hangar
MR10 = dimensions Performance 1.2 ARL, SCT, PAX

The standard mission for electric variant of
the aircraft shall provide for the transport of . @
MR11 | 9 passengers at a distance of 555 km Performance 1.11,2.2,4.4,5.1 ARL, OEM, SCT, PAX Q
=0
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= Systems architectures definition
« Definition of 4 OBS architectures with different electrification level

» The different architectures have been inspired by real industry trends

)

Conventional

BLEED Sys. I— —————————
W BLEED Sys. |-
1

ENGINE

6%3/
ELECTRIC HYDRAULIC PNEUMATIC
SYSTEM SYSTEM SYSTEM
HYDRAULI
USERS USERS
. Avlonlcs
« FCS + ECS
- IP5 « Landing Gear * [IPS
= Lights, IFE, + Brakes
Galley, Toilets

(hydraulic actuators,
pneumatic IPS and ECS,
low voltage)

More Electric Aircraft 1

ENGINE

| ELECTRIC SYSTEM | |PNEUMATIC

SYSTEM
ELECTRIC USERS PNEggéanc
+ Avionics . FCS
e Fuel « Landing Gear : ﬁfés
- IPS * Brakes
= Lights, IFE,
Galley, Toilets

More Electric Aircraft 2

ENGINE

+  Avionics

* Fuel

- IPS

+  Lights, IFE,

Galley, Toilets

= FCS
+  Landing Gear
+ Brakes

All Electric Aircraft

ENGINE

ELECTRIC
SYSTEM

ELECTRIC USERS | EXTERNAL
AR
«  Avionics . FCS
*  Fuel + Landing Gear
- IPS +  Brakes
«  Lights, IFE,
Galley, Toilets

PNEUMATIC
USERS

+ ECS

MEA1 (electric
actuators, pneumatic
IPS and ECS, high
voltage)

MEA2 (hydraulic actuators,
electro-pneumatic IPS and
ECS, high voltage)

WP7 Certification Driven Stream | Marco Fioriti/WP7 partners | February 2023

AEA (electric actuators,

electro-pneumatic IPS and ECS,

high voltage)
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AC3 workflow development :,.\“ﬁ“'

NUNT . Aircraft conceptual
11 Plsc1pllnes. ;onceptual design - initialization 4#7 Deutsches Zentrum
d@S]gn, OBS deSlgn, (DLR) DLR fiir Luft- und Raumfahrt
Aerodynamics, Engine design,
Performance, Engine SFC, 4 OBS architectures
Synthesis, Noise, Minimum Wing surface 30-40 m”2 O?goﬂf;ﬂ?"
Performance, Safety, Cost and .
.. Engine offtakes
Emissions sensitivity
(PoliTo) Virtual certification process
ONERA Aero-surrogate CFS Engineering Il n v :
I I | ————— | (CFSE-ONERA) T y II;:A)ft(?rnal n01s1(?
M: DLR’ UNINA) I I A% UniversiTaoeau STubio NaroLt | Performance Immum performance
ONERA, CFSE, CONU, RWTH ' Fevericoll (UNINA) v Safety assessment
and PoliTo I I @UN[VEREITADEGUSTUDIDINAPOLI Eng(ilzlﬁlﬂis;ign
Feoericoll : -
Deutsches Zentrum Aircraft synthesis
DLR fiir Luft- und Raumfahrt (DLR)
Converged MDA I I UniversiTA pecu STupt or Narows Cert. NOISE
i (UNINA)
v OBS mass and power _—] . o , Feoericoll
- Implementation in the MDO distributed environment I I ONERA Cert. Minimum
Var]at]on m THE FRENCH AEROSPACE LAB Performance (ONERA)
v Effect on engine power, T CPACS
. . - v3 = .
engine SFC, airframe mass, 4 | U Concordia | ASSESS (CONU)
geometry and Costs&Emissions
aerodynamics B LR = | ™ (RWTH)

Final assessment AG I L E 4'09 @
=0
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AC3 Achievements

= Systems electrification assessment (1 of 3)

» The different architectures have been designed and integrated with the aircraft

Maximum mechanical power

and propulsion system 60000
. . . . . 50000
+ Electric actuation, bleedless, high voltage, electric ECS and IPS technologies are
considered _ _ & 30000
Main OBS mass analysis z
200 © 20000 | ‘ ‘ ‘
o || || || " “ || ‘ I | || || || || “ 0w

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
300

m Conventional ®™MoreEI1 m More El 2 All Electric

250

The increase of
electric System Maximum pneumatic airflow

mass is little for "'3
" electrified o
10 architectures due 0
to the use of high o,
5 I“ “ < voltage (270 VDC 5
| |

200

Mass [kg]
(=]

[

o
L8]

o
=
v

airflow [kg/s)

-

instead of 28 VDC() 0

o
@

LNDG Pneumatic Sys. Hyd Sys. El Sys

H Conventional ®MoreEll mMoreEl2 All Electric

W Conventional MW MoreEl1l ™ MoreEl2 All Electric

Practically constant. Only

flap surfaces deflected Notable mass saving when removing Hydraulic and Pneumatic 4.0
with actuators systems (electric actuation and/or bleedless architecture) AG I L E
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AC3 Results

= Systems electrification assessment e S | f
« The effect on aircraft mass and engine efficiency are both [ s A T I 1
considered =L T I 1 |
. . . . I."x:‘ (o h | | | an i perforimice {19
 For each OBS architecture, a new aircraft is designed i 1 |
| [} L oy 1o ]
(‘s) A ] { c
Masses: A [%] ref. conventional
E ; e 4] o MTOM Airframe Fuel mass OBS mass
‘ 0.00
-
' -1.00 I ._0.59.
E“ veczof(;‘;{”].-in;_l61616?6‘?5_0;_060606161611’_1;IGrEer-Llne ECS> _2.00 1 27 1 17 1 59 -127 -119 2 00 1 87
S ecioteolo; : oSt Cine e -3.00
Ly orveetokis010:0/010:0.0:0 a,.a,.a,.a?a?ai'?éilii"z‘lii?ilifEc§t3> -4.00 H_,
];ﬂli:%s,4,‘::Ta)z;:;:;2;:;:;2;:;:}2i?§gg:_a2>u OO/ T B e oS -5.00
-6.00
-7.00 MEA1
-8.00
-9.00

® aMEAL mMEA? mAcA
— - AGILE*%¢
9
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= Fxternal Noise CS23 / CS25

AC3 Results

+ CPACSfile

» Take-off trajectory computed (Fly-Over

and Later noise analysis)

* Approach trajectory computed

(Approach noise analysis)

» Airframe NOISE computed

» Engine noise assumed

2500

1500

Y [m]

AC3-WPT Take-Off Footprint (OASPL)

500 - 4

L L
76 78 80 82 84 B6

0

T4

1000 2000 3000 4000 5000 6000 7000 8000 9000

X [m]

Overall Sound Pressure Level (in dBA)

\
~

Option

No. of generated architectures

No. of feasible
architectures

No. of unfeasible
architectures

Conventional
(Hydraulic Landing
Gear Braking System)

6

4

2

Typical Examples
Syshrch_1_[J|| SysAch 3 []|

Typical Example
SysArch_1

Typical Example
SysArch_4

(0 (=) (D) ()
()

e

) (=)

More Electric 1
(Fully Electric Landing
Gear Braking System)

o0

4

1

-

Typical Examples
[ Syshuner O] SysAhe2 O

Typical Example
SysArch_e1

Typical Example
SysArch_e3

©

610
Bl

0
610

@ ®
o0le

(= (=) (=)
(2 @)

= Safety Assessment

Systems architecture
(braking system)

N

Main requirement: at least 2

independent power lines

Different electrification
levels 2 different
architectures

)
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= Minimum Performance CS23 / CS25

C67-C1

C67-C2

C67-C3

C67-C4

Min. climb gradient
Performance simulation

Different aircraft configurations
(clean, TO, LND condition)

Different mission phases (TO, climb,
Landing)

AC3 - FAR 23 paragraphs
Climb Gradient values




AC3 MDO results
CS25

= Systems electrification assessment with .

certification constraints 5 '
» Variables: systems electrification level, wing surface 5 . Ry )
© ¢
« Objectives: minimum LCC and maximum Certification / .o » g
Margins MEA1 g ' £
u ReSUltS / E EEES EY)
» All electric (AEA) and More electric 1 (MEAT) are the AEA 15 1 O pareto Fon }
best electrification level W s 20 200 2
* AEA achieved minimum LCC, MEA1 achieved
maximum Certification margins AC3 Optimization €523
» Aircraft with small wing surface perform better i:: & ¢
- Y i 38
s [ > .
ﬂ(z 0.' % s
MEA1 S as{ [ M 2
% 8041 < > ¢ 34 %
® g
P GV T o |
AEA 65 (*) s'::;to Front
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Towards cyber-physical collaborative aircraft development
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