
CFS-Engineering Internship Report

Exploration of optimisation and
machine learning methods in the

fields of aircraft design

Student:
Vivien Riolo

Supervisors:
Aidan Jungo
Jan B. Vos

September 23, 2020

Abstract

Multi-disciplinary Analysis and Optimisation is a commonly used method
in conceptual aircraft design. Combined with the power of computers an
efficient tool can be developed to generate optimised or new designs for
aircraft. The following report describes the implementation of two numer-
ical tools within a conceptual design environment for the optimisation of
an aircraft design and the use of surrogate models to approximate costly
computations.

Contents

1 Introduction 3

2 Optimisation in MDAO systems 4
2.1 Optimization problem . 4
2.2 MDO Architecture . 4
2.3 CEASIOMpy architecture . 5

3 Optimisation module in CEASIOMpy 6
3.1 The OpenMDAO library . 6
3.2 Module implementation . 7

3.2.1 Routine setup . 7
3.2.2 Parameters . 8

3.3 Program implementation . 9
3.3.1 Classes . 9
3.3.2 Functions . 9

3.4 Program workflow . 12

4 Surrogate Models in CEASIOMpy 14
4.1 Machine learning in Aircraft design 14
4.2 Design of Experiment . 14
4.3 SMTrain module . 15
4.4 SMUse module . 17

5 Combination of Optimisation and surrogate model 19
5.1 Computational time gain . 19
5.2 Foreseeable usage . 19

6 Conclusion 20

7 Acknowledgement 20

8 Appendix 23
8.1 N2 Diagram . 23

1

Nomenclature

Symbols

f,F Objective function
x Design space variable
Ω Design space
g constraint function
Cl Lift coefficient
Cd Drag coefficient

Abbreviations

AGILE Aircraft 3rd Generation MDO for Innovative Collaboration of Het-
erogeneous Teams of Experts

CEASIOMpy Computerised Environment for Aircraft Synthesis and Integrated
Optimisation Methods in python

COBYLA Constrained Optimisation by Linear Approximation

CPACS Common Parametric Aircraft Configuration Schema

DLR Deutsches Zentrum fuer Luft- und Raumfahrt/German Aerospace
Center

MDA Multi-discipplinary Analysis

MDAO Multi-disciplinary Analysis and Optimisation

MDF Multi-disciplinary Feasible

MDO Multi-disciplinary Optimisation

SMT Surrogate Modelling Toolbox

SQP Sequencial Quadratic Programming

SLSQP Sequencial Least-Square Programming

XDSM eXtended Design Structure Matrix

2

1 Introduction

Though planes have been successfully flying around since more than a century
for now, the effort to come up with ever increasing machine efficiencies and
optimizing every subsystem of the aircraft has never stopped. As progress was
made, the methodology in the domain of aircraft design also evolved to take
into account an increasing complexity of the design processes and the strong
coupling of various fields of engineering.

Nowadays the design of an aircraft and its subsystems is a combination of
multiple disciplines, such as structural analysis or aerodynamics. Each disci-
pline shall come up with a design that would best fit the aircraft requirements
according to their analysis. However what is an optimal choice in one domain
may be a drawback for another characteristic of the aircraft. Thus the mod-
ern design of an aircraft is a careful balance between the different disciplines,
where the main goal is to reach a global optimum of the airplane requirements
instead of focusing on local subsystem optima. Such approach is referred to
as a multidisciplinary analysis and optimisation (MDAO) process. These pro-
cesses, though used very early in aircraft design, are gaining a second wave of
popularity within the fourth industrial revolution with the growing computa-
tional resources of modern computers, as they enable the solving of complex
optimisation problems in a feasible amount of time.

Another domain which has drawn an increasing attention these past years,
especially due to the possible applications of its tools in the areas of numer-
ical computation, is machine learning, which allows to predict the output of
a model without running costly calculations. This aspect therefore hints to a
powerful tool that can be achieved if implemented in an optimisation routine to
approximate the output of a computationally greedy discipline.

It is in light of these aspects and within the framework of the AGILE 4.0
project that an optimisation and a surrogate model building tool were imple-
mented in the CEASIOMpy software as a tool to use for the conceptual design
phase of an aircraft. The report is organized as follows: section 2 gives a brief
refresh of the formulation of an optimisation problem and introduces the con-
cept of MDAO. Sections 3 and 4 respectively describe the Optimisation and SM
modules that were developed, and a small introduction on the combination of
these tools is given in section 5.

3

2 Optimisation in MDAO systems

2.1 Optimization problem

The aim of such problems is usually to find the maximum or minimum value of
a function, which depends on a set of parameters referred to as design variables
and when some of these variables have a dependency between them the prob-
lem is said to be constrained. A mathematical formulation of an optimisation
problem would be :

Objective function min
x∈Ω

(F (x))

Under constrains g(x) = 0

Where x represents the vector of design variables, Ω is the design space, F is
the objective function and g the vector of constraint functions. F can also be a
vector, in which case the optimisation problem is referred to as a multi-objective
problem.

An important aspect of optimisation is whether or not the derivatives of the
problem are known, as multiple search algorithm rely on this information to
progress through the design space. Therefore two different families of algorithm
exist :

• Gradient-based optimisation : These algorithm use the information of the
derivatives between the parameters to conduct their search. Their use
is relatively common and they are an efficient way to solve the problem
if the objective function can be derived. A lot of algorithms have been
developed based on this method [1].

• Gradient-free optimisation : In the case of an objective function which
does not allow the derivatives to be computed, the algorithms must search
through the design space without notion of the steepest descent, often
using the evaluation of the function at some points in the design space
to decide in which place to search next [2]. The current optimisation
algorithm that was implemented in CEASIOMpy belongs to this class of
algorithms.

In the case of an aircraft design, the optimisation problem is usually con-
strained and the objective functions are often complex non-linear functions,
which may not be known. Objective functions that are of interest in the do-
main are usually part of the aircraft first level requirements [3, 4, 5]. Some
recurrent physical quantities that can be cited are the lift-to-drag ratio Cl

Cd
, the

maximal take-off mass mtom or the range of the aircraft.

2.2 MDO Architecture

In multi-disciplinary optimisation, the objective function is often the result of
one or multiple computations, which can be decomposed into smaller computa-
tion steps. One step can represent the outcome of one discipline analysis, and
so one basic architecture for a multi-disciplinary system could be represented
as seen in figure 1. This kind of representation is referred to as an XDSM di-
agram, which is a commonly used method of representation in MDO and will

4

be used throughout this report to illustrate a workflow architecture. It is thus
recommended to get acquainted with this representation by reading the paper
of Lambe et al. [6] who developed this method.

Figure 1: Basic architecture example for a multi-disciplinary analysis (MDA)
system. Each analysis block represents a computation and the information
flow between the blocks is represented by the gray lines, whereas the workflow
connections is shown with the black line. The initial vector of inputs is indicated
by the x0 box and the resulting output vector is the Results box. The xij boxes
show the vectors of variables that are passed from module i to module j.

Such a workflow can then be coupled to a solver which takes the results as an
input and the first module inputs as design variables, and so a first optimisation
routine can be obtained. This basic block can then be included as a component
of a larger system, which can combine more of such components in a distributed
or monolithic way [7], depending on the coupling of the components. This
process allows for a wide range of possible architectures to chose from when
setting up a MDO or MDAO problem.

Aircraft design was one of the first field in which MDO was used due to the
multiple aspects to take into account during the process, starting with more
simple sub-systems of the plane at first, such as wing design [7]. Nowadays a lot
more of the aircraft design aspects can be taken into account within multi-level
MDO frameworks [8, 9, 10], even taking disciplines which are not related to the
aircraft object itself such as the economic aspects [11].

2.3 CEASIOMpy architecture

The CEASIOMpy software consists of multiple modules which run different
analysis on a predefined CPACS file [12]. Some module inputs are the outputs
of other modules, which creates a dependency between some disciplines of the
analysis. The current analysis process is run as a monolithic bloc and no paral-
lelisation is yet implemented. The architecture for the MDAO system was then

5

chosen to remain the same as the MDA system, namely a multi-disciplinary
feasible (MDF) architecture [7, 13], which does not take into account the con-
sistency and discipline analysis constraints.

3 Optimisation module in CEASIOMpy

3.1 The OpenMDAO library

A specialised Python library was used to implement the Optimisation module
in the software. OpenMDAO [14] is an open-source library that contains the
functions to set up and solve an optimisation problem. Two types of routine
were implemented using this library :

• Optimisation routine : The program solves an optimisation problem with
user-defined parameters (constraints, design variables, objective function)
and settings (choice of driver, modules to run, etc). OpenMDAO offers
different search algorithms to solve a problem, however in CEASIOMpy
the COBYLA algorithm is imposed as it is the only one to deal with
gradient-free, constrained optimisation problems [15]. To modify this the
user must make internal changes to the code.

• Design of Experiment (DoE) : The program evaluates an objective function
at randomly chosen points in a user-defined design space. Several options
exist to define the points at which the function shall be evaluated. The
Design of Experiment process and implementation is further described in
section 4.2.

An optimisation (or DoE) problem can be set up with OpenMDAO using
its three basic components :

• Explicit Component : Used in the case of an explicit computation (output
a is obtained by direct evaluation of some function a = f(x)).

• Implicit Component : Used to define an implicit computation (output a
is computed by solving a system f(x, a) = 0).

• IndepVar Component : This component defines the variables of the prob-
lem whose values will be modified by the driver at each iteration. They
represent the vector of design variables of the routine.

A workflow can be generated by defining the inputs and outputs of each
problem components and connecting them together. The next step is then
to indicate which inputs shall be considered as problem variables by assigning
them to an IndepVar component and after choosing a driver (the algorithm
to conduct the search through the design space) the routine can be launched.
Figure 2 illustrates the final setup of the problem.

OpenMDAO also comes with options for recording the data and visualiz-
ing the problem architecture. Both of these features were implemented in the
software and their output files are described in the outputs section of Table 1.

6

Figure 2: Example of a basic optimisation workflow with multiple components.
The driver gives the inputs to the IndepVar component (IVC) which forwards
them to the other component, Implicit or Explicit. The objective function is an
output of the last component and is fed to the driver in order to move to the
next iteration of the search algorithm.

3.2 Module implementation

3.2.1 Routine setup

CEASIOMpy offers the possibility to run different analysis modules on an air-
craft configuration, which is stored in a CPACS file. A workflow can be created
to run different modules one after the other to make a complete analysis of the
aircraft. An optimisation or DoE is implemented as follows :

Modules: First the optimisation module builds a problem model by creating
an Explicit component for each CEASIOMpy module that will be used within
the workflow and defining its inputs and outputs based on those found in the
specification file of the module.

Geometry: Another Explicit component is created to enable the modifica-
tions of geometrical variables of the aircraft, which are not included in a CEA-
SIOMpy module.

Objective: Here the inputs are the variables that are used to compute the
objective function. The output is the result of the computation. For now only
one objective function can be handled by the program.

Once these components are created, their inputs and outputs can be defined as
parameters of the problem. The input and output list can be found in Table 1
and figure 3 illustrates the routine workflow with all the components.

7

Figure 3: Architecture of a standard workflow within a routine.

3.2.2 Parameters

The choice of the parameters which can be set as design variables, constrains or
components of the objective function is wide and varies with the list of modules
that is used in the routine as not all modules have the same inputs and outputs.

Geometrical parameters : The first parameters to be integrated as design
variables and that can be constrained in all cases are the geometric parameters
of the aircraft, which can be called within any workflow analysis as they do not
depend of any CEASIOMpy module. These can be handled with the functions
of the TIGL library, but caution has to be taken as to the set of parameters to
choose within one optimisation routine, as some variables may be geometrically
related to each other (e.g the wing span and wing aspect ratio) and so, unless
specified explicitly in the problem setup, it will cause major issues during the
optimisation process.

Module parameters : For each module, the input parameters can be set
as design variables, and the output parameters can be defined as components
of the objective function, or they can be set as a constraint. This process is
done automatically by reading the spec file of each module, which contain the
information on the module inputs and outputs.

Aeromap parameters : For any CFD analysis (SU2 or PyTornado in CEA-
SIOMpy), a set of special parameters must be given in order to characterize the
flow around the aircraft. These are summed up in an aeromap, which contains
4 input parameters that may also serve as design variables:

• α : angle of attack.

• Ma : Mach number.

• h : Altitude.

8

• β : Side-slip angle.

And 6 output parameters will be generated which can be used as a constraint
or as part of an objective function:

• Cl, Cd, Cs : Respectively the Lift, Drag, and Side-force coefficient.

• Cml, Cmd, Cms : Moment coefficients.

For an optimisation routine, only the first entry of the aeromap parameters is
taken into account, however in the case of a DoE, an entire aeromap can be taken
to add multiple data to the sample within one single iteration. This option can
be specified by enabling the ”Use whole aeromap” option in the settings GUI.

3.3 Program implementation

3.3.1 Classes

The module uses 4 different classes that inherit from the ExplicitComponent
class of OpenMDAO, whose role are described in 3.2.1. The fourth class (Sm-
Comp) is called in when a surrogate model is used in the routine, as the param-
eters that the model takes as inputs may not be the same than those that were
selected for the routine and thus need to be specified.

3.3.2 Functions

The code was written using the Python 3 language. Figure 4 shows the program
architecture for the optimisation module. For the sake of readability only the
most important function calls are represented. The routine launcher function
is the main function of the program, which will call all the other functions that
will construct the problem, solve it and process the data.

9

INPUTS

Entry Description

Objective function Expression of the objective function, which can be a com-
bination of multiple parameters.

Aeromap choice Aeromap to be used within the routine if there are some
aerodynamic modules included.

Optimisation goal (OPTIM) Choosing between a minimisation or a maximi-
sation problem.

Max iteration nb (OPTIM)Criterion to stop the routine after a number of
iteration.

Tolerance (OPTIM) Criterion to stop the routine based on the con-
vergence rate.

DoE Driver (DOE) Choice of the driver for the DoE.

Number of samples (DOE) Parameter to compute the number of samples for
the DoE. This value is further described in the DoE section
(see 4.2).

Use whole aeromap (DOE) Indicate if an entire aeromap has to be saved at
each iteration. This can be useful when one wants more
than one aeromap point to be evaluated.

Saving geometry (OPTIONAL) Save the CPACS file every n iteration.

Variable library (OPTIONAL) CSV file containing all the parameters to
setup the problem.

OUTPUTS

Entry Description

circuit.html Visualization of the problem setup.

circuit.sqlite Used to generate the N2 file.

Driver recorder.sql Contains all the information of the routine.

Variable library.csv Contains the initial information of all problem parameters.

Variable history.csv Contains the values of all problem parameters at each iter-
ations.

Table 1: Input-Output summary of the optimisation module. An indication of
when this entry is of use is given between brackets. The inputs will all be found
in the GUI when launching a workflow with a routine.

10

Figure 4: FFBD of the Optimisation module. The gray ovals represent a func-
tion of the program, and the blue boxes represent a file. The arrows indicate the
direction of the information flow, and the dotted lines indicate that the function
is called from another module.

Further technical information and details are available within the description of
the code functions and classes. The standard structure for function description
in CEASIOMpy is given as such :

””” B r i e f d e s c r i p t i o n o f the func t i on .

More d e t a i l e d d e s c r i p t i o n .
An example may be added .

Args :
L i s t o f inputs o f the func t i on .

Returns :
L i s t o f outputs o f the func t i on .

”””

11

3.4 Program workflow

The optimisation module is called as soon as the modules are chosen in the
optimisation routine. It is therefore not necessary to add it to the module list
when choosing the modules to run in a workflow. The module parameters, listed
in table 1, are then chosen in the SettingsGUI module.

The CSV file that is either given by the user or generated by the program is
presented in figure 5. It contains a set of parameters that will be passed on to
the OpenMDAO library to setup the problem. The following rules apply when
writing a parameter to the file :

• Name: Each parameter must have a different name. Usually this name
corresponds to a module input or output that is specified in the spec file
of said module.

• type: Three types can be assigned to a parameter : obj, const or des.

obj This type marks the parameters as being one that is used to compute
the objective function, if he appears in the objective function he must
be added as such in the CSV file.

const If a parameter has to be set as a constrain, this keyword is to be
used. In this version of the optimisation module the only constraints
available are fixed values.

des For the parameters whose value will be changed by the driver this
keyword must be indicated.

• initial value: The initial value that a parameter must have or has, based
on the CPACS file.

• min/max: These are optional parameters to add for des or const param-
eters. They ensure a lower and/or upper boundary along the dimension
of the parameter.

• getpath/setpath: The last two entries ensure for the correct parameter
modification in the CPACS file. If the parameter can be changed via the
Tixi library, then only an Xpath pointing to its location in the CPACS
will be given and the setcommand will be left empty. Else, if the Tigl
library is used to modify a parameter (usually related to aircraft geome-
try), the getpath will containt the Tigl command to compute the value of
the parameter and the setpath will contain the command to modify that
value.

Figure 5: Example of a CSV file containing the parameters for the optimisation
module.

12

This file will be saved and a dictionary will be created by the program,
which will serve as the collector for all new data that will be generated (the
values for each parameter at each iteration). Once the routine has been com-
pleted, the dictionary will be saved as a CSV file called ”Variable history”,
under the corresponding working directory folder. An N2 diagram called ”cir-
cuit.html” (see 8.1) will also be generated, along with two other files (”cir-
cuit.sqlite” and ”Driver recorder.sql”) that are generated by the OpenMDAO
library. The .sqlite file is needed to generate the N2 diagram and the .sql file
stores a history of the routine, which is used to read the results of the objective
function.

A number of test cases can be found in the CEASIOMpy documentation
[16]. They illustrate the various ways in which the software can be used to
run a routine, use any of the CEASIOMpy modules and give indications on the
different methods to setup and run a workflow, wether it is done via the GUI
or the RCU software.

13

4 Surrogate Models in CEASIOMpy

4.1 Machine learning in Aircraft design

Machine learning is a sub-domain of artificial intelligence that focuses on the
development of algorithms that can improve through the feeding of data. With
the ever-increasing amount of data at disposal and the higher complexity of
today’s models for various system, such methods that can make a prediction for
a given problem without directly solving a large system appear as interesting
candidates to be used in industry software.

Although many methods of this domain are already being used in various
sub-domains of aircraft design, one of the most commonly used machine learning
technique in the domain of aircraft design appears to be surrogate models [17]
. One approach that can be adopted is to make a first search using a surrogate
model, which can be used to extrapolate a result based on a set of predefined
data for which the output is already known. In the domain of CFD, such
model could become particularly handy in order to guess an initial solution to
a problem based on previous simulations results and so converging to a solution
faster than without initial guess.

The implementation of surrogate models in CEASIOMpy is done by using the
Surrogate Modelling Toolbox (SMT) which is an open-source Python package
consisting of libraries of surrogate modeling methods [18].

4.2 Design of Experiment

In order to generate the data that will be needed to train a surrogate model, a
Design of Experiment must be conducted. The OpenMDAO library possesses
the driver that can run such procedure. This procedure consists of running a
specified workflow for a given number of time, by changing the design variables
of the problem according to a sampling method. This procedure can be used to
produce a first mapping of the objective function in the defined space of variable
and so identify the parameters that have a significant influence on the objective
function and those which are not relevant.

An example of DoE is made using only the vertical wings span and width
of an aircraft as design variables, using the uniform distribution of experiment
points. Figures 6a and 6b show the scattering of the sample points in two
different variable space.

In the case of a DoE, the number of points to be evaluated within the
design space can be generated in different ways. This can come in handy, for
instance, when certain parts of the space are more of relevant than others, or if
contrariwise points should randomly be taken in a uniform way over the whole
space. In CEASIOMpy the sample of design points can be generated by using
one of the following methods :

• FullFactorial : The full factorial method evaluates a combination of the
X specified parameters for l number of different values of each variable,
resulting in a total of lX data points that will be generated. The level l of
different values to be taken has to be chosen carefully, and this method is
not recommended in the case of many parameters.

• Plackett-Burman : This method belongs to the fractional-factorial family,

14

(a) Sample points in the wing sweep space.
It is observed that the sweep of each
wing does not influence much the objec-
tive function, as for different combination
of the two sweep values, the same magni-
tude of Cl is reached.

(b) Sample points in the wing span space.
It is clearly seen that the span of the main
wing influences Cl the most, and a small
dependency can also be noticed for the
span of the second wing.

its process to generate points is the same than the full-factorial one. How-
ever with this method not all combinations are made and thus less data
is generated.

• Uniform : This method generates a number of sample points using a
uniform distribution method for the variable values.

• LatinHypercube : This method takes random points in the design space
by taking into account the location of the previously generated points, so
the final sample of points is representative of the whole design space.

• CSV file : By giving a CSV file with predefined values, a DoE with an
arbitrary set of values can be conducted.

4.3 SMTrain module

By giving a training data-set containing inputs and their corresponding out-
puts, a surrogate model can be trained and used to predict an output value for
new input points. A surrogate model can be considered as a black box as the
user can specify which parameters shall be taken as inputs and outputs. Thus
one can create a model based on a workflow by including all desired modules.
The methods that were implemented in CEASIOMpy are different forms of the
Krigin model and a least-square approximation. These methods and others are
described in detail at [19].

To work, the SMTrain module in CEASIOMpy only requires a csv file with
a list of inputs and outputs, that will serve as the model data set for training
and optional validation. In the case of parameters which can all be found in
an aeromap the csv file does not need to be specified, the other entries of the
module are summed up in table 2. The module generates a model which is saved
as a binary file in the current working directory, along with the information of
the inputs and outputs that the model takes.

15

INPUTS

Entry Description

Training Data-set (DUAL) CSV or Aeromap containing the data
to be used to train the surrogate model.

Data partition value Select the percentage ∈ [0, 1] of data to be
used to train the model, the other part serving
for validation.

Model type Choice of the Surrogate to create.

Use of Aeromap only (OPTIONAL) Indicate if the model that is
trained will only takes and predicts aeromap
entries.

Name of Aeromap (DUAL) Name of the aeromap whose entries
shall be used to train model.

OUTPUTS

Entry Description

SM file Binary file that contains the surrogate model
and its input/output information

Table 2: Inputs and Outputs of the SMTrain module.

The ease of use of the toolbox however can become more complex when a closer
look is taken at the hyper-parameters of the different models, i.e the coefficient
that appear in the mathematical formulae of the model. For now the GUI only
allows the user to choose from a list of different model, but the fine-tuning of
their different parameters still remains within the code of the SMTrain module.
The functional scheme of the module is represented in figure 7.

16

Figure 7: FFBD diagram of the SMTrain module

4.4 SMUse module

After a surrogate model has been generated, it can be used with the SMUse
module to be run within a workflow. The particularity of this module comes
from the entries that the surrogate will take, which will change depending on
the model that is used. It is necessary to make a distinction here between the
inputs and outputs of the SMUse module (tab. 3) and the inputs and outputs
of the surrogate model, which is used by the module. This aspect is important
to take into account as it implies that this module is a special case if one wants
to create an automatic process for the modules using their inputs and outputs.
Here they can be found in the file that has been saved during the creation of
the model.

A practical case of adaptation of this module can be found within the opti-
misation module, where the inputs and outputs of each module appearing in the
workflow are automatically added as variables. In this case a special class was
created to deal with the specific inputs and outputs of any surrogate model as
explained in section 3.3.1. The functional scheme of the module is represented
in figure 8.

17

INPUTS

Entry Description

CPACS file (DUAL) XML file from which the model in-
puts will be retrieved.

SM file Binary file that contains the surrogate model
and its input/output information.

Use of Aeromap (OPTIONAL) Indicate if the model that is
used only takes and predicts aeromap entries.

Name of Aeromap (DUAL) Name of the aeromap whose entries
shall be used by the model.

OUTPUTS

Entry Description

CPACS file XML file in which the outputs of the model
will be saved.

Table 3: Inputs and Outputs of the SMUse module.

Figure 8: FFBD diagram of the SMUse module

18

5 Combination of Optimisation and surrogate
model

5.1 Computational time gain

The main advantage of using a surrogate model within an optimisation process
lies in the drastic reduction of computational resources needed to run the pro-
cess. However this gain in time comes with a drawback in the fidelity of the
solution as the surrogate model guesses a solution based on its experience. This
must be taken into account and a validation of the final solution of an optimi-
sation routine using a model should always be verified by a higher fidelity CFD
analysis.

A simple optimisation routine using a surrogate model take less than 10
seconds to be completed on one processor only, whereas a routine with a SU2
computation that must be converged at every iteration can take up to a few
days. The main difference lies in the fidelity of the results, where the surrogate
has only made a prediction, the SU2 computation has given a result that is
trustworthy up to a certain level.

5.2 Foreseeable usage

An iterative process can be developed to obtain an optimisation routine that
would give a satisfying solution in terms of fidelity and use the surrogates to
reduce the computational cost. The global scheme would be to use the sur-
rogate model and guess a first optimal solution based on the available data.
This solution would then be validated with a medium or high-fidelity CFD soft-
ware. Based on the CFD analysis the new data could be either fed towards
an optimisation cycle that would try to find the local optimum around the ob-
tained solution, or it could be added to the previous set of points to train a new
surrogate model and repeat the previous steps [20].

19

6 Conclusion

In the framework of the Agile 4.0 project, two functionalities were added to
the CEASIOMpy software. First, an optimisation module which can solve non-
linear constrained problems or run a Design of Experiment has been imple-
mented. The second addition consists of two tools, one that creates a surrogate
model and another one that uses a surrogate to approximate the outputs of a
module or a combination of modules. The combination of both tools aims to
provide a rapid and efficient mean of optimisation.

Future work which could be foresighted are the implementation of a more
advanced GUI that could allow the user to tune the optimisation and model
generation on a lower level, e. g. by adding specific parameters to the driver or
the surrogate model or implementing new search algorithms for the optimisa-
tion routine, such as genetic algorithms which may be used for multi-objective
optimisation.

A more complex and consequent task would be the implementation of the
components on a lower level of the code, i.e defining each variable in a module as
a component and specify the relation between each of them. Such improvement
would allow for more robust and efficient problem setting and solving. Plus the
derivatives could be implemented and could then lead to the use of gradient-
based methods for the optimisation such as SLSQP. However this would imply
to rewrite entire pans of code which may result as being more time-consuming
than using the present implementation.

7 Acknowledgement

The work presented in this report has been performed in the framework of
the AGILE 4.0 project (TowardsCyber-physical Collaborative Aircraft Devel-
opment) and has received funding from the European Union Horizon 2020 Pro-
gramme under grant agreement nr◦815122.

20

References

[1] M. Bierlaire, Optimisation: Principles and Algorithms. Presses Polytech-
niques Universitaires Romandes, 2015.

[2] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to Derivative-
Free Optimization. MOS-SIAM Series on Optimization, Society for Indus-
trial and Applied Mathematics, 2009.

[3] W. H. Mason, Configuration Aerodynamics, ch. 4. AIAA Education Series,
-, 6 ed., 2018.

[4] D. P. Raymer, Aircraft Design : A Conceptual Approach, ch. 2. -, 2019.

[5] V. Komarov, Conceptual Aircraft Design. -, 2011.

[6] A. B. Lambe and J. R. R. A. Martins, “Extensions to the Design Struc-
ture Matrix for the Description of Multidisciplinary Design, Analysis, and
Optimization Processes,” Structural and Multidisciplinary Optimization,
vol. 46, pp. 273–284, 2012.

[7] J. R. R. A. Martins and A. B. Lambe, “Multidisciplinary Design Optimiza-
tion: A Survey of Architectures,” AIAA Journal, vol. 51, no. 9, pp. 2049–
2075, 2013.

[8] Pat Piperni, “MDO for Aircraft Design at Bombardier Aerospace.” Sym-
posium on Collaboration in Aircraft Design, 10 2015.

[9] A. Sgueglia, P. Schmollgruber, N. Bartoli, E. Benard, J. Morlier, J. Jasa,
J. R. R. A. Martins, J. T. Hwang, and J. S. Gray, “Multidisciplinary Design
Optimization Framework with Coupled Derivative Computation for Hybrid
Aircraft,” Journal of Aircraft, vol. 0, no. 0, pp. 1–15, 0.

[10] J. T. Hwang and A. Ning, “Large-scale Multidisciplinary Optimization of
an Electric Aircraft for On-demand Mobility,” AIAA, jan 2018.

[11] S. Roy, W. A. Crossley, K. T. Moore, J. S. Gray, and J. R. R. A. Martins,
“Monolithic Approach for Next-Generation Aircraft Design Considering
Airline Operations and Economics,” Journal Aircraft, vol. 56, July 2019.

[12] DLR, “Common Parametric Aircraft Configuration Schema.”

[13] R. M. Lewis, G. R. Shubin, E. J. Cramer, J. E. Denis, P. D. Franck,
R. Michael, and L. Gregory, “Problem formulation for multidisciplinary
optimization,” SIAM Journal on Optimisation, february 1997.

[14] J. S. Gray, J. T. Hwang, J. R. R. A. Martins, K. T. Moore, and B. A.
Naylor, “OpenMDAO: An Open-Source Framework for Multidisciplinary
Design, Analysis, and Optimization,” Structural and Multidisciplinary Op-
timization, vol. 59, pp. 1075–1104, 2019.

[15] M. J. D. Powell, “A view of Algorithms for Optimization without Deriva-
tives.” William Benter Distinguished Lecture, City University of Hong
Kong, 2007.

21

[16] “CEASIOMpy Documentation.” https://ceasiompy.readthedocs.io/

en/latest/user_guide/getting_started.html. Accessed: 2020-08-14.

[17] C. Jacob, J. Bieler, and A. Bardenhagen, “Introducting surrogate models to
the structural preliminary aircraft design phase,” in Deutsche Gesellschaft
für Luft- und Raumfahrt - Lilienthal-Oberth e.V., 2018.

[18] M. A. Bouhlel, J. T. Hwang, N. Bartoli, R. Lafage, J. Morlier, and J. R.
R. A. Martins, “A python surrogate modeling framework with derivatives,”
Advances in Engineering Software, p. 102662, 2019.

[19] “Smt: Surrogate modeling toolbox.” https://smt.readthedocs.io/en/

latest/index.html#documentation-contents. Accessed: 2020-07-14.

[20] P. I. Frazier, “A Tutorial on Bayesian Optimization.” arXiv:1807.02811v1,
2018.

22

https://ceasiompy.readthedocs.io/en/latest/user_guide/getting_started.html
https://ceasiompy.readthedocs.io/en/latest/user_guide/getting_started.html
https://smt.readthedocs.io/en/latest/index.html#documentation-contents
https://smt.readthedocs.io/en/latest/index.html#documentation-contents

8 Appendix

8.1 N2 Diagram

The OpenMDAO library allows for n2-diagram generation, which can be a useful
tool to vizualise all the connections between the parameters of the problem.
An example is illustrated in figure 9 where one module and some geometric
components are used within an optimisation routine. The N2 diagram can
be opened in an explorer window and is interactive. By default the routine
generates such a diagram and saves it in the corresponding CEASIOMpy Run
folder in the WKDIR directory.

23

F
ig

u
re

9:
N

2
d

ia
gr

am
of

an
op

ti
m

is
at

io
n

w
o
rk

fl
ow

w
it

h
th

e
P
y
T
or
n
a
d
o

a
n

d
th

e
g
eo

m
et

ri
c

co
m

p
o
n

en
ts

m
o
d

u
le

s.

24

	Introduction
	Optimisation in MDAO systems
	Optimization problem
	MDO Architecture
	CEASIOMpy architecture

	Optimisation module in CEASIOMpy
	The OpenMDAO library
	Module implementation
	Routine setup
	Parameters

	Program implementation
	Classes
	Functions

	Program workflow

	Surrogate Models in CEASIOMpy
	Machine learning in Aircraft design
	Design of Experiment
	SMTrain module
	SMUse module

	Combination of Optimisation and surrogate model
	Computational time gain
	Foreseeable usage

	Conclusion
	Acknowledgement
	Appendix
	N2 Diagram

